Anomaly Detection Based on Local Nearest Neighbor Distance Descriptor in Crowded Scenes
نویسندگان
چکیده
منابع مشابه
Anomaly Detection Based on Local Nearest Neighbor Distance Descriptor in Crowded Scenes
We propose a novel local nearest neighbor distance (LNND) descriptor for anomaly detection in crowded scenes. Comparing with the commonly used low-level feature descriptors in previous works, LNND descriptor has two major advantages. First, LNND descriptor efficiently incorporates spatial and temporal contextual information around the video event that is important for detecting anomalous intera...
متن کاملDensity aware anomaly detection in crowded scenes
Coherent nature of crowd movement allows representing the crowd motion using sparse features. However, surveillance videos recorded at different periods of time are likely to have different crowd densities and motion characteristics. These varying scene properties necessitate use of different models for an effective representation of behaviour at different periods. In this study, a density awar...
متن کاملContextual anomaly detection in crowded surveillance scenes
This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve...
متن کاملa lattice based nearest neighbor classifier for anomaly intrusion detection
as networking and communication technology becomes more widespread, thequantity and impact of system attackers have been increased rapidly. themethodology of intrusion detection (ids) is generally classified into two broadcategories according to the detection approaches: misuse detection and anomalydetection. in misuse detection approach, abnormal system behavior is defined atfirst, and then an...
متن کاملAnomaly Detection with Score functions based on Nearest Neighbor Graphs
We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on score functions derived from nearest neighbor graphs on n-point nominal data. Anomalies are declared whenever the score of a test sample falls below α, which is supposed to be the desired false alarm level. The resulting anomaly detector is shown to be asymptotically optimal in that it is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/632575